
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A262 153 DTIC

C

THESIS

EFFICIENT GRID BASED TECHNIQUES FOR SOLVING
THE WEIGHTED REGION LEAST COST PATH

PROBLEM ON MULTICOMPUTERS

by

Cengiz EKIN

December 1992

Thesis Advisor: Amr ZAKY

Approved for public release; distribution is unlimited.

93 3 31 133 93-06694

I~g~qgg39 1111

IINM AOR~M
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATIN PAGE
Ia. REPORT SECURITY CLASSIFICATION UNCLASSIFIED 10b H" IRICTIVE ARIKINGS

2a SECURITY CLASSIFICAT10N AUTHORITY 3. DISTRIBUTON/AVAILABILITYCOF REPORIT

2b. ECLSSIICATON/)OWGRADNG CHEULEApproved for public release;
2b. ECLSSIICA1ONUOWNRAUNG CHEULEdistribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NAME OF gE"FnORUIGOANZTN 6b. OFFICE SYBOL 7a. AEO OIOIGOGNZTO
omputer Lnc eept. (if applicable)

Naval Postgraduate School CS
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (Cit, State, and ZIP Code)

Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING rub. OFFICE SYMBOL 9.POUENTISRMTIDTFCAONUBR
ORGANIZATION [(ifapplica ble)

Sc. A D0R E SS (City, State, and ZIP Code) 10. SOURCE F FUNDING NUMBERS
PROGAM ROJECT TASWOKNI

ELEMEN O O NO ACCESSION NO

11. TITLE (Include Security Classification)
EFFICIENT GRID BASED TECHNIQUES FOR SOLVING THE WEGHTED REGION LEAST COST PATH PROBLEM ON MULTICOMPUTERS

(UNCLASSIFIED)
QN~AL AUTHOR(S)

ase s 13b. FROME TOVRE 14.:0AýT;EOF REPORT (Year. MonUO. Day)
Ritr SFO ODecembe 1992 100

'16. 5UPPLEMENTARY NOTATIO ~e views expressed in this thesi ar se of the author and do not reflect the ofticial
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if ne~c-Rsary and ident*f by block number)

FIELD GROUP SUB-GROUP Numerical Path Planning, Weigted Regions, Grid Based Techniques.
Transputers, Distributed Computing, Parallel Processing.

19. ABSTRACT (ContInue on reverse it necssay nd idont#* by block numbw)
This thesis explores the possibilities of developing fast grid-based parallel algorithms to solve the Weighted

Region Least Cost Path problem. Two complementary steps have been undertaken. First, an efficient sequential
algorithm to s;olve the above problem was developed. The algorithm is a modification of a Gauss-Seidel-like
algorithm for obtaining the minimum costs. The most salient feature of the algorithm is the reduction of the number
of nodes and edges in cheaper regions of the grid. The reported experimental results ascertain the superiority of this
algorithm with regard to computer running time at a modest reduction in the accuracy of the obtained solution.
Parallel implementations of grid-based algorithms were studied. A simple grid-based variant was implemented on a
network of Transputers. The overall approach employed could be used to develop a parallel version of the above se-
quential algorithm on a Transputer network, combining both advantages of efficiency and parallelism.

[UNCLASSIFIED/UNLIMITED Q SAME AS APT. Q OTiC USERS UNCLASSIFIED

2L _C14rAde Area Code) 12Clga

OD FORM 1473,8s4 MAR 83 APR edlion may be used until otiaustdI SECURITY CLASSF1CAT110N OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

ABSTRA~

"1 hi.s hesis e-xilores the Possibilities of developing fast grid-based paialtel algoi itlis, to

'oldve (hle Weighted Region Least Cost Palh problem. Two collI)lementaty s•epq have beeii

imideihtaken. Firl. ail efficient sequential algorithm to solve the amove piohiem %%as devel-

plied. The algorithmil is a modification of a Gauss-Seidel -like algorithm for obtaining the

iiiniiluli cost.. The most salient feature of the algorithim is the reduction of the itimber (if

niod•s aid ed(ges. in cheaper regions of the grid. The reported experimental tesultslas.eLwv lainll

the superiority of this algorithm with regard to computer rumning time at a mllnrdest re(lnction

ini the accturacy of Ithe obained solution. Parallel implementations of grid-based aigorithiaws

were studied. A simple grid-based variant was implemented on a network of "w'ausputers.

"1hc overall apptoach employed could be used to develop a parallel version of the above

sequential algorithn on a Transputer network. combining both advaintages of efficiency

and parallelism.

JD~Tc QUAIt ~rM 4

Aceson For

NTIS CRA&M
D1IC TAB
Unannounced
JuStift)catfon -

By
Distribution I

AvailabilitY Codes

I vil anld iof
Otst Specwa

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A . GENERAL .. I

B. THESIS OUTLINE 2

II. BACKGROUND .. 3

A. SINGLE SOURCE SHORTEST PATHS (SSSP) 3

1. Dijktra's Algorithm 3

2. Parallelization Of SSSP 5

B. RAY TRACING .. 6

1. Snell's Law Of Refraction 6

2. Implementation 7

3. Parallelization 8

C. EDGE SLICING 9

1. Implementation 9

2. Parallelization 9

D. GRID ALGORITHMS 9

1. The Wavefront Variant 10

2. Relaxation-Based Approach 12

a. Implementation 13

b. Parallelization 17

iv

III. A MODIFIED GRID ALGORITHM 21

A. INTRODUCTION 21

B. VARIABLE GRID SIZE APPROACH 21

C . RESULTS ... 24

D. DRAWBACKS ... 2:

IV. THE ENVIRONMENT 31

A. TRANSPUTER .. 31

B. ALSYS ADA ... 33

1. Channels 33

2. Harnesses 34

C. GUIDE TO PROGRAM DEVELOPMENT 34

1. MAKE program maintenance Utility 35

2. Checking Tools 35

3. Examples in Steps of Instructions 35

V. A MULTICOMPUTER ALGORITHM 40

A. IMPLEMENTATION 40

B. A VARIANT ALGORITHM THAT SAVES ON COMMUNICATION... 43

VI. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH.45

LIST OF REFERENCES .. 47

APPENDIX A - SEQUENTIAL ALGORITHM SOURCE CODE 50

APPENDIX B - MODIFIED ALGORITHM SOURCE CODE 58

APPENDIX C - PARALLEL ALGORITHM SOURCE CODE 72

INITIAL DISTRIBUTION LIST 91

V

LIST OF FIGURES

Figure 1: Dijkstra's Algorithm 3

Figure 2: An Example Of The SSSP Algorithm 4

Figure 3: Parallelized SSSP Algorithm Example 6

Figure 4: Snell's Law Of Refraction 7

Figure 5: Ray Tracing 8

Figure 6: Edge Slicing (2-Point) 10

Figure 7: Neighbors In Grid Algoithm 11

Figure 8: Wavefront Technique 12

Figure 9: A Node Described With Its Neighbors

And Their Relations 14

Figure 10: Data Structure 15

Figure 11: The Pseudocode For Relaxation-Based Algorithm.16

Figure 12.a: Example For Relaxation-Based Algorithm

The Values Inside The Nodes Are The

Heights 18

Figure 12.b: Example For Relaxation-Based Algorithm

The Values In The Nodes Are The Initial

Costs From The Source 19

Figure 12.c: Example For Relaxation-Based Algorithm

The Values Inside The Nodes Are The

Minimum Costs From The Source 20

Figure 13: The eseudocode for Modified Grid Algorithm 22

vi

Figure 14: The Pseudocode for Modified Grid Algorithm.....24

Figure 15.a: An Example For A Modified Algorithm (I) 26

Figure 15.b: An Example For A Modified Algorithm (II) 27

Figure 15.c: An Example For A Modified Algorithm (III) 28

Figure 16: A Block Diagram of T800 32

Figure 17: Diagram Of The Steps Involved In Program

Development Using Alsys Ada On Transputers 39

Figure 18: Pseudocode For Parallel Algorithm From

The One Processor's Point Of View.

The Other Processor Will Have Read and Writes

Interchanged 41

Figure 19: Write and Read Patterns 42

Figure 20: Patterns for Partitioning 43

Figure 21: The Pseudocode For The Communication-Saver

Variant Algorithm Of The Parallel Algorithm

From The One Processor's Point Of View.

The Other Processor Will Have Read and Writes

Interchanged 44

vii

I. INTRODUCTION

A. GENERAL

Numerical path planning has been studied quite a bit in

the last few years. One problem of numerical path planning

involves finding the optimal path from a given starting point

to a goal point through a plane that has been subdivided into

weighted regions. This prob-em is known as the Weighted Region

Least Cost Path (WRLCP) problem. The best path can be

minimizing some cost (e.g. energy or time).

Several approaches can be used to tackle this WRLCP

problem. Some of these approaches and their pros and cons are

presented in chapter II.

One of the most significant constraints has been the

ability to evaluate in real time the optimal path through a

weighted region. Traditional sequential algorithms can

quickly become overloaded with the sheer number of

calculations required for a realistic problem. Consequently,

several algorithms for solving this type of problem have been

researched in recent years. These algorithms have, to a

varying degree, potential for parallelization. Parallel

algorithms have a tremendous advantage in speed, but also may

open the door to new problems, especially in mapping,

scheduling and coordinating the different parallel

activities. Multicomputer networks are no exception. The

principal goal in parallelizing an algorithm is to sustain a

close-to-linear speedup in processing time. This is no trivial

task, since the processor communication reduces the speedup.

This, and the fact that parallelizing an algorithm may

increase its overall processing time (summed over the total

network of processors) make this problem challenging.

We investigated in this thesis some of the basic approaches

with their potential for parallelization, and implemented one

of these algorithms, first sequentially and then in parallel

on a Transputer network.

B. THBSIS OUTLINE

Chapter II introduces an analysis of the different

parallel path approaches which have been investigated

recently. The algorithm which appears most promising for

solving the weighted region least cost path problem, which is

a grid algorithm, has been selected for further study. In

chapter III, implementation and some modifications of this

algorithm is presented with an illustrative example. Chapter

IV provides a description of the Transputer network and ADA.

In chapter V, this approach has been developed into a parallel

algorithm and implemented on an INMOS Transputer network using

ADA. The algorithms ability to use parallel computing to solve

arbitrary WRLCP problems has been investigated. Finally,

these results will be compared with the results of single

processor, and with previous results on a multicomputer

network. Conclusions and recommendations for further research

are offered in chapter VI.

2

I I.BACKGROUND

We overview in this chapter some of the basic approaches

for solving the WRLCP problem and we investigate their

potential for parallelization.

A. SINGLE SOURCE SHORTEST PATHS (SSSP)

1. Dijkstra's Algorithm

The algorithm for SSSP presented in Figure 1, which was

developed by Dijkstra in 1959, is the starting point for this

problem [MAN89] .

Algoritlm Sin le Source Shortest Pathts (G,v);
Input: G=(VE)E (-a weighfied directed graph) ., and v (the source vertex).
Output: for each vertex w, w.SP is thE length of the shortest path from v to w.

fall lengths are assumed to be nonnegative.

foirall vertices w do
w.mark := false;
w.SP :=infinite;

end loop;
v.SP:= O;

while there exists an unmarked vertex do
let w be an unmarked vertex such that w.SP is minimal;
w.mark := true;

for all edges (w,z) such that z is unmarked do
if w.SP + lenigh(w,z) < z.SP then

z.SP := w.SP + length(w~z)
end if;

end loop;
end loop;

end;

Figure 1: Dijkstra's Algorithm

In Figure 2, a small example is presented to

demonstrate the algorithm. The first line includes only paths

of one edge from v (the source). The shortest path is chosen,

in this case, leading to vertex a. The second line shows the

3

update of the paths including now all paths of length one from

either v or a, and the shortest path now leads to c. A new

vertex is added in each line, and the current known shortest

paths from v are listed to every vertex. The underlined

distances are those that are known to be the shortest. The

algorithm keeps adding new vertices to the selected list until

all vertices are added.

a g 5

2 9

4 e 2

9
C p-

2 3
f g

v a b c d e f g h

a 0 1 5 00 9 00 CIO

c 0 1 5 3 9 00 cc c 0

b 0 5 7 -a 12 @0

d 0 1 7 8 12 00 00

e 0 Z 2 8 12 11

h 0 1 2 11 12 11 9

g 0 .1 Z 11 12 11 2
f 0 1 1 11 1 12 i1 2

Figure 2: An Example Of The SSSP Algorithm

4

The algorithm can be easily extended from directed

to undirected form.

2. Parallelization Of SSSP

Dijkstra's algorithm has been parallelized by Moore

[QUI87]. He devised two parallel algorithms. The first

algorithm makes the for loop (in Figure 1) parallel, which

explores the outgoing edges from a given vertex, the second

method is to paral±elize the while loop (in Figure 1); that

is, at any one time in the execution of the algorithm there

are probably many vertices in the queue. The parallelizability

of the first method is restricted by the number of edges

outgoing from each vertex. On the other hand, the second

method performs larger tasks, that produces good speedup. More

detailed information can be found in the given reference.

In the parallel algorithm based on the second method,

a queue is used. That queue is initialized with the source

point, and then a number of asynchronous processes are

created. Each of these processes goes through the steps of

deleting a node from the queue, examining its outgoing edges,

and inserting into the queue the nodes to which shorter paths

have been found. In Figure 3 an example is presented in which

the number of nodes in the queue shows actually the number of

processes that can be parallelized. Distances are kept until

they are reached from another direction. When there are more

than one edge reaching to a node, minimum cost is chosen.

5

4 A0 0 0

A 8 4

C c 1

Sour'cbc 1 2

A B B
C C

Figure 3: Parallelized SSSP Algorithm Example

B. RAY TRACING

1. Snell's Law of Refraction

Snell's law (HEC87] defines the path a ray of light

takes as it passes from one medi.um to another. The ray is

refracted across the border between the media according to the

following equation,

n1sinO1 = n2sin02

where nj, n 2 are the indices of refraction and the angles are

of incidence and refraction respectively (Figure 4). Fermat's

principle which implies Snell's law states that light follows

a path between two points such that it takes the minimum time.

It can be proven (for example see [RIC87]), that a similar

principle govern the path a particle takes across two regions,

in which the speed of the particle is uniform in each region.

6

Therefore, we can apply the principles of optics to solve the

WRLCP problem by assuming regions as optical media and weights

as indices of refraction.

medium 1 medium 2
n j 122

6 2

Figure 4: Snell's Law Of Refraction

2. Implementation

The main step of this implementation is to shoot a ray

from the source and see where it is going to land. We keep

doing this for initial rays with different angles until some

of the rays hit the goal. In essence, the boundaries borde--

the weighted regions, the index of refraction depends on the

weights and the rays refract on the border to border until it

reaches the goal. At every boundary of two regions the ray

obeys Snell's law of refraction. Among those rays that hit the

goal point we obtain the WRLCP. In Figure 5, at the source

point the short rays are just to give an idea about different

set of angles and continuing three rays are given to make a

clear example.

7

w7 w6 Goal

w8 w9 J

1 lOh wll w

9/
a• w2 w3

S~~wl•/

Figure 5: Ray Tracing

Through different weighted regions, as the path Sklmnop

misses the goal, the minimal paths SabedeG and Sfghijo hit it,

and one of them is chosen as WRLCP after comparison.

3. Parallelization

The Snell's law based algorithm can be easily

parallelized by assigning a different set of angles to each

processor. If a solution is found, it is optimal. The cost of

finding the intersection point of a ray with a triangle is not

large. However, the algorithm suffers several drawbacks: The

ray inversion, possible presence of blind regions, and use of

expensive trigonometric functions. More details can be found

in [RIC87].

8

C. EDGE SLICING

1. Implementation

In this technique, every edge is divided into a number

of segments of equal length. Some points are placed

equidistantly on every map edge in the triangulated plane. A

graph is constructed by connecting every two points on two

edges belonging in the same triangle. The distance between two

consecutive points is made proportional to some function of

the costs of the two regions separated by that edge. A graph

is constructed whose nodes are the original triangles'

vertices plus the points which divides the edges into

segments. The edges of this graph are the original triangles'

edges plus the lines connecting every two non-colinear points

in the same graph. In Figure 6, edge slicing is shown for the

case where an edge is divided into two equal segments.

2. ParallelizatLon

After the edges in a graph are sliced, the WRLCP problem

is reduced to a SSSP problem, and the technique used for

parallelizing SSSP can be invoked. A variant of this algorithm

is shown in [KIN91].

D. GRID ALGORITHMS

Another approach for approximating the WRLCP problem is to

model the terrain as a grid. Simply, a grid is laid over the

terrain. The map is divided into equidistant grid points. The

weights in the regions are transferred as edge costs. Figure

7 illustrates how a node is connected to different number of

neighbors (we implemented a node with 4-neighbors, but it is

easy to extend the implementation for more neighbors).

9

Figure 6: Edge Slicing (2-Point)

Finally, the shortest path analysis is performed on the graph.

Two classes of grid algorithms could be used. These are

explained below.

1. The Wavefront Variant

Starting with the source point at time zero, it

progresses one step every time unit in all directions adding

the appropriate nodes (these nodes which can be reached in the

earliest at this time step) to a wavefront depending on the

edge weights and direction of propagation. The wavefront keeps

advancing every time unit until it hits the goal point. It is

obvious that the progress in the inexpensive areas is bigger

than expensive ones, since the length of step is proportional

10

Orch

WatC *&me

Outh

S-Nveighbors

1 -Me Ighbors

Figure 7: Neighbors In Grid Algorithm

to cost and time. Figure 8 shows an example in which the bigger

strides take place in the low cost areas.

Fiur 8: Waef6n Techiqu

Onef :i ::•,•:: wae ratsepwl idtesots ah u

depending.... on edg weigt.Tenbrof ods nth

Figure 8: Wavefront Technique

One wavefront sweep will find the shortest path. But

such shortest path may need a large number of time steps

depending on edge weights. The number of nodes on the

wavefront to be processed at every point in time varies; that

causes difficulty in scheduling them on a distributed

computer.

2. Rolazation-Based Apzroach

The reason why this approach is called "relaxation-

based" is because it is similar to Gauss-Seidel iteration

12

class of computation in Partial Differential Equations

[HAB87].

cj'j(m+ 1)=Ci.j(m) +W[c(i-l).j(m) +c(i+l).j(m+l1)

+cci. j- I 1) (m) + [ci .j+I 1) (m+ 1) -4ci.j (m) I

where ctj(m) shows value of grid point in row i, column j of

step m.

The bracketed term indicates the change that occurs

after each iteration as c1 , j ('m) is updated to cI,j (m+l).

Similarly, in our implementation, as shown in Figure 9, in

each iteration, a node is updated. The cost of node is

minimized by comparing it with the neighbors according to the

following pseudocode:

Current(--,J) -=ain I cold(i,j), C(i,j.+1) + north_welght

c(i+,1j) + east_weight

c(i,j-1) + aouth-weight

c(i-1,J) + weatweight I

We decided to implement the relaxation-based grid

algorithm because of the straight-forward solutions on a

distributed computer.

a. Iplemmntation

The grid graph is represented as a two-dimensional

array of records. Data structure and information carried by

every node is shown in Figure 10 and the variables are

described below.

13

(i-I, .I) (I, j.) (+,

north_wilght

mouthweigh

S(i,j-l)

Figure 9: A Node Described With Its Neighbors

And Their Relations

Current_comt: The beginning and updated cost value

of the node.

Oldcost: Old_cost is the previous iteration cost

value of the node and used for determining the change in cost.

NI,ZS,W: North, East, South and West neighbors.

Weight: The weight on edge toward that direction.

14

(in) (i+ ,n) (n,n)
S9 GRIDPOINT (record)H ~~~~.................................... 0 R D P I T (e o d

Currentcost
(1Wcost
N I•.go

...
Directin*

(j) (*Direction of minimum path

passing through node

GRID
(2-d array of records)

rigure 10: Data Structure

Diasance: The step between two nodes (here it is

always equal to one, but it changes in the modified

algorithm).

Diroctiozn: String("North", "East", "South", "West")

and used for showing the path in the output.

The pseudocode for the algorithm is presented in

Figure 11.

We obtained a data file which has 6400 raw data

values representing the heights of 80*80 grid approximation

of region. We constructed costs for the edges of the grids

based on some function of these heights. For border nodes,

15

. To find the Weighted Region Least Cost Path

2tima,. Two dimensional grid of points- GRID
Source point: (is,js)
Goal point: (ig,jg)
Threshold: T

outt.. Cost of minimization from source to goal: Cost
The minimum path from source to goal:
(is,js) (ig,jg)

Initialize
Read the data file
for all nodes loop
calculate weight(i,j)

end loop
xx -- At this point code will be inserted in the

-- modified version of the algorithm (see Fig.14)
flag = true
while flag loop

flag = false
for all nodes loop
find minimum value
change = node(i,j).oldcost-node(i,j).currentcost
if change > T then

raise flag
end if

end loop
end loop
output the WRLCP

Figure 11: The Psuedocode For Relaxation-Based Algorithm

edges leading out of the grid where assigned very high

positive values for weights, and minus one to distance. For

all nodes we initialize the costs to a maximum positive number

in order to use them in comparisons for finding the minimum.

To output the Least Cost Path, we utilize a stack

since the path traces back from the goal to the source point.

So the output is displayed from source to goal as cost,

16

direction and listance (distance is equal to one in the

straight-forward algoriLrnm) are calculated at each step.

A small-sized (4*4) example is presented in the

Figure 12 for clear understanding.

b. Parallelization

In the relaxation-based approach, solutions can be

straightforward on a vector computer or a on 2-d mesh of

processors. But also there are some unattractive features such

as the algorithm is intrinsically nonoptimal (that is true for

the wavefront technique, too). These algorithms do not reward

the areas with the low cost by reducing the computations

there. If the relaxation approach is used on a realistic

number of processors, it is not known how to partition the

computations. For instance, only one of the processors has the

source point and starts computing, the computations of the

rest of the processors for taking the minimum of infinite

values are useless until they get the border values from that

processor.

17

Step 1. The heights are read from the file

and loaded to nodes.

Step 2. The weights on the edges are calculated

using some functions

(e.g. abs(1024 - 1023) + 1 = 2)

Figure 12.a: Example For Relaxation-Based Algorithm
The Values Inside The Nodes Are The

Heights

18

0 00

(continued from Figure 12.a)

Step 3. Source point.current_cost = 0

The others.current_cost =-

Figure 12.b: Example For Relaxation-Based Algorithm
The Values In The Nodes Are The Initial
Costs From The Source.

19

2 7 5S

2 13 7

(continued from Figure 12.b)

Step 4. This is the first iteration. In the

latter iterations continue.

Step 5. 14 becomes 12 after first iteration

of cost minimization.

Step 6. Thick arrows show the minimum least

cost path

Figure 12.c: Example For Relaxation-Based Algorithm
The Values Inside The Nodes Are The
Minimum Costs From The Source

20

III. A MODIFIED GRID ALGORITHM

A. INTRODUCTION

The complexity of the straight-forward grid algorithm in

worst-case is 0(n 4) for an n x n grid. In the worst case, the

WRLCP passes through all the nodes. Since the algorithm does

not take the advantage of the low cost regions, we modified

the algorithm to remedy this defficiency.

S. VARIABLE GRID SIZE APPROACH

We can use relaxation to obtain the shortest path from the

source to different points without updating the nearest

neihgbors as in the classical technique. We update the

farthest neihgbors (two horizontal and two vertical in case

of a 4-neihgbor technique) whose weighted distance is less

than or equal to a prespecified constant. Determining such

neighbors is done at the initialization phase. Rather than

having the wavefront advance by a fixed distance, this

algorithm has it advance by a fixed weight, thus bigger

strides are made in cheaper regions.

Information that decides which neighbor to propagate to is

shown in Figure 13. It assumes that every grid point will have

four records (N,E,S,W), and every record will have two

components: the number of grid points to the neighbor to be

updated (one in the classical method), and the weighted

distance to the neighbor.

21

A1ff±ZtaL I.To make horizantal search and elimination
II.To decide which neghbor to propagate

Given. Two dimensional grid of points: GRID (a~l edges
Source point: (is,3s) calculated)
Goal point: (ig,jg)
Stride

outu- A searched grid and neighbor for node(i,j) to
propogate

Sahorizantal search and elimination

for all rows i loop
J=1
while j < jmax loop

J = jo
loop

if weight from (isjs) to (ig,jg) < S then
j = j+l

end if
until (weight from (is,js) to (ig,jg) => S)

or (I = jmax)
if weight from (is,js) to (ig,jg) > S then

i = j-i
end if
delete all horizantal edges between (ij 0) and

(i,j)
(i,j 0).east.weight = (i,j).westweight

= weight difference
(ij 0).eastdistance = (i,j).westdistance

= i-jo
end loop

end loop

ZoEuxahz. propogation

for all nodes (i,j) loop
for north loop

while ((i,j).north_weight + (i,j).north_weight
(i,j).north-distance} < stride loop

(i,j).northdistance:=(i,j).north_distance + 1
(i,j).north_weight:= old_value +

(i,j+(i,j).north_distance).northweight
end loop

end loop
end loop
repeat for other directions

Figure 13: The Pseudocode for Modified Grid Algorithm

22

The procedure propagation assumes that the distance

between successive grid points has been already computed;

otherwise a more efficient strategy could be utilized.

The modified relaxation algorithm is much faster than the

traditional relaxation-based technique. The number of

propagations in every polygon pi is reduced from Ai (the area

of pi) to A1 / (wi**2), where wi is the weight of a unit distance

in pi.

The user can change the threshold parameter in straight-

forward algorithm, as he can also alter the strlde parameter,

in addition to the threshold parameter, in the modified

algorithm. The threshold parameter ensures that the algorithm

stops as it is with some threshold for the optimum. The strlde

parameter dictates the minimum weight of an edge thus making

bigger strides in low cost areas. The strlde parameter

indirectly controls the number of edges and nodes to be

eliminated, hence making the algorithm faster.

An adventageous side-effect is the elimination of some

nodes. These nodes are eliminated if they are not connected

to more than one node (both source and goal points cannot be

eliminated). The psuedocode for these procedures are given

in the same order as in the program: Horizantal search, edge

eliminating, vertical search, edge eliminating and node

eliminating in Figure 14. Furthermore, a continuation to the

example in Figure 12 is given in Figure 15.

23

&J22XJL&*. To find the Weighted Region Least Cost Path
in the modified version of relaxation-based
grid algorithm

G Two dimensional grid. of points: GRID
Source point: (is,js)
Goal point: (ig,jg)
Thresholdi T
Stride: S

otu Cost of minimization from source to goal: Cost
The minimum path from source to goal:
(is,is) (ig,jg)

-- This code is inserted at point xx in Figure 11
Horizantal Search and Elimination(HSE)
Vertical Search and Elimination(similar to HSE)
Eliminate the nodes which are not connected to more

than one neighbor
-- The rest of the algorithm is the same except
-- while loop uses procedure propagation to propagate

Figure 14: The Pseudocode for Modified Grid Algorithm

C. RESULTS

We performed a series of experiments using the Meridian

Ada compiler in Sparc stations in order to realize how the

parameters effect time and cost. Some of results from these

experiments are combined and shown in the Table I-IV. In Table

I and II we tested threshold parameter and concluded that the

greater the threshold value is, the faster the program is.

Changing the threshold value does not have a significant

effect on the least cost. The results taken from the

experiments with modified program are presented in Table III-

IV. In these experiments, we kept threshold value constant

24

(equal to zero) and changed the stride value between 1 and

100. In the first row we realized that the cost of

modifications increased the amount of time for computations.

As seen form the last column, the time gets less even though

the second trial took longer time. The number of the nodes

increases depending on the stride value. Meanwhile, the

disadvantage is that the least cost gets higher for higher

stride values.

D. DRAWBACKS

The modified algorithm requires more overhead. The over-

head as reflected by the results is worthwhile because the

overall running time of the modified algorithm is smaller

than the original algorithm for an approximately clcse

stride value. Time overhead might be reduced by not requir-

ing that distances between all neighboring gridpoint be pre-

computed. Again, this algorithm is intrinsically suboptimal.

There is a possibility that the graph is decomposed into more

than one connected component due to the eliminationn of edges

and nodes. If such is the case, then source and goal points

might not be reachable from one another. This problem will

manifest itself by having the minimum cost of the grid not

changing from the assigned initial value. If there is more

than one connected component, and the source and goal points

are in the same connected component, then there should be a

technique that avoids computations in the other connected

components.

The program codes for the modified grid algorithm are

enclosed in Appendix B.

25

STEP 1. Horizontal search is performed

(e.g. with Stride = 10, in this case

the weights an edges are added until

it gets more than stride.)

STEP 2. Edge Elimination is performed

Figure 15.a: An Example For A Modified Algorithm (I)

26

2>< 5< 7 5

9 > <1 ><3

2

0~ 80 0
>< >< 5> 4

5

(continued from Figure 15.a)
STEP 3. Vertical Search is performed the same as

horizontal search

STEP 4. Edge eliminating is performed.

Figure 15.b: An Example For A Modified Algorithm (II)

27

(continued from Figure 15.b)

STEP 5. Node Elimination

STEP 6. Cost Minimization and finding

least cost path.

Figure 15.c: An Example For A Modified Algorithm (III)

28

Table I: EXPERIMENT SHOWING THE COST AND COMPUTATION TIME
VERSUS THE THRESHOLD WITH CLASSICAL ALGORITHM FROM (1,1) TO

(80,80)

Threshold Cost Time(sec)

0 262 6.9164

10 262 5.3165

20 262 2.8832

30 262 2.8832

50 262 2.8832

100 262 2.8832

Table 2: EXPERIMENT SHOWING THE COST AND COMPUTATION TIME
VERSUS THE THRESHOLD WITH CLASSICAL ALGORITHM FROM (10,1)

TO (55,80)

Threshold Cost Time(sec)

0 308 10.0996

10 308 9.3163

20 308 9.3163

30 308 9.2996

50 308 9.2996

1001 308 9.2330

29

Table 3: EXPERIMENT SHOWING THE COST AND COMPUTATION TIME
VERSUS THE STRIDE WITH MODIFIED ALGORITHM FROM (1,1) TO (80,80)

Number of
Threshold Stride Cost Time(sec) Nodes

Deleted

0 1 262 11.8329 0

0 5 276 19.5826* 1375

0 I0 298 10.9996 3177

0 20 330 9.3496 4747

0 30 356 7.2497 5391

0 50 356 4.0332 5877

o 100 356 2.1666 6172

Table 4: EXPERIMENT SHOWING THE COST AND COMPUTATION TIME
VERSUS THE STRIDE WITH MODIFIED ALGORITHM FROM (10,1) TO

(55,80)

Number of
Threshold Stride Cost Time(sec) Nodes

Deleted

0 1 308 17.3160 0

0 5 314 19.6659* 1375

0 10 330 10.9662 3197

0 20 336 9.3996 4730

0 30 416 7.797 5390

0 50 454 4.0498 5870

0 100 454 2.1499 6168

* Overhead causes this increase in time

30

IV. THE ENVIRONMENT

In this chapter we describe both the hardware and the soft-

ware environments in which we implemented the parallel algo-

rithm presented in Chapter V. The first section introduces the

Transputer [TRA87], and the second section introduces Alsys

Ada (ALS90]. A guide for program development using Ada on the

Transputer is presented in the third section.

A. TRANSPUTZR

The Transputer implementation is based on the concept of

the Communicating Sequential Processes (CSP). In order to uti-

lize the transputer effectively, we need to understand the way

it works. Transputer is a microprocessor with its own local

memory storage and four links designed to communicate directly

with other Transputers. The larger the number of processors

in the network is, the more processing power, the more memory

and links are available. The difficulties also grow with the

number of processors. The most visible difficulty in the net-

work is to avoid deadlock in which communication fails and

results in processes waiting forever.

There are different types of Transputer: T2 (T212, T222),

T4 (T414, T425) AND T8 (T800, T801, T805). We worked with T800

Transputers. A block diagram of a T800 Transputer is presented

in Figure 15. The major components of T800 Transputer, as

seen, are memory, processor and communication system connect-

ed via a 32 bit bus.

The high level programming language OCCAM [OCC88][OCC891

31

is the primary language used for programming the Transputers.

It is designed to run concurrent processes on a network of

Transputers. Concurrence and communication are two main con-

cepts in OCCAM. They allow processes to run simultaneously and

transfer information through channels from process to pro-

cess. Processes communicate by message passing, do not share

variables, and synchronize only when they communicate. Commu-

nication is synchronous and unbuffered.

The host computer for the Transputer network that we use is a

PC-286.

FLOATING POINT UNIT

} PROCESSOR

ON-CHIP
MEMORY• LTK

TIM[ERRAC8

Figure 16: A Block Diagram of T800.

32

B. ALSYS ADA

Alsys Ada Compilation System, which consists of a compiler

and a binder, is used for handling Ada programs in a

Transputer programming environment. We used Alsys Ada as the

language of choice for developing our WRLCP problem code.

Below we describe the most salient feature that distinguishes

Alsys Ada usage from ordinary programming in Ada.

1. Channels

Communication between Ada programs is provided by using

transputer channels via the implementation defined package

CHANNELS. The CHANNELS package contains a generic package

CHANNELIO which defines input-output for values of a

specified object type. READ, WRITE, READ_OR_FAIL,

WRITE_OR_FAIL procedures within this generic package are used

for input and output between channels. The distributed

application is written as a set of independent programs for

single or multiple Transputers and communicate through

channels with unique names.

We write a COMMON package, which contains declarations

common to more than one Ada program and which also contains

an instantiating of CHANNEL_IO to allow data to be

communicated between independent programs. The data type of

the channel, common to an application, is defined in a COMMON

package. For example, to declare a channel of new NAME1 of

type DATATYPE, we include the following in the COMMON

package:

33

DATATYPE : (can be any type: integer, record...);

package NAME1 is new CHANNELS.CHANNELIO (DATATYPE);

In the programs it is used as follows:

declaration-- Ada roimnntbsegin,3 h*-t i-e ~ a~o

NAME2 :CCHANNELS.CHANNELREF: =CHANNELS. INPARAMETERS (vi

rtual channel number);

-- ,,11.3 13 :hann- used foU lnput from e other ýl o:-. , an "i t

NAME3 :CHANNELS.CHANNELREF: =CHANNELS.OUTPARAMETERS (virtual

channel number) ; it '.. fo,: output to thtoerý -

begin -- main progiram orart; here

NAME1.READ(NAME2, the same datatype) ;--4et th• •pu: from r:!e

-=hanne i - -NAME2

NAMEl.WRITE(NAME3, the same datatype);-- put Jat-a_ type

value to -- the c.hannel NAME3.

end

2. Karnesi..

In order to run Ada programs in parallel on a single

processor or a multi-transputer network, we need to use an

interface, which is an occam process called a harness. A

harness is used as a wrapping for the Ada program to be

accepted by a Transputer. For every Ada program, two occam

harnesses have to be created. Harnesses are explained in more

details in section C.

C. GUIDE FOR PROGRAM DEVZLOPM2NT

In this section we present some helpful points to make

program development easier. After learning the MAKE Program

Maintenance Utility, the tools for checking the network, and

34

studying the examples, one will be ready for program

development in this environment.

1. XMKE program maintenance Utility

MAKE is a utility program designed to help control of

programming environment, to automate the process by

determining which parts of the program is changed since the

last compilation and rebuilds them accordingly.

makefile is a script file, written by programmer and

directs MAKE. You can find MAKE commands below:

make family: Creates the Ada family and library sub-

directories. This is a one-time-only operation.

make: The standard command for building the executable

programs after changes have been made to the source.

make run: Executes the compiled program.

make help: Displays the MAKE commands.

make -n: Displays but do not execute commands.

make check: Checks transputer topology.

make clean: Deletes all files except source files.

make *.o: Make Ada object codes.

There is a batch file named dolt_all that executes the

first three commands:make family,make, and make run.

2. Checking Tools

Besides make check there are some more executable files

which check the network topology: worm.exe, chknet.exe.

3. Zxamples in Steps of Instructions

It is better to start with complete examples to get used

to it.

35

I. Make your own directory and copy the generic

installation into it:

>copy d:\alay*O37\&ource*generlc%*. .

Complete documentation can be found in the files

read.me and &how.me.

11. In this environment, there is an Ada source file

proj.ada containing procedure proj. If you edit your own code

with these names, it means you are ready to compile your code

in Alsys Ada environment.

111. You can type doleall which executes three

commands:

make family, make,make run.

IV. It is time to try the examples on a single

transputer and then on multiple transputers. You can refer to

the appendix C and Alsys Ada User Manuals.

V. Communicating Ada processes on a single transputer

needs the list of files below:

maklefilo: A script file written by the programmer and

executes the commands according to makefile.

family.lnv: This file creates the library environment

(It does not change.).

proj.lnv: This file directs compiling and binding.

maln.oco: In order to integrate Ada with other

languages a well defined interface is required. Ada programs

may then be run in parallel on a single processor or

distributed across a multi-transputer network, just as occam

processes. This is a default occam harness provided as part

of the compilation system in both source and compiled forms.

36

The main body of the harness consists of three processes

operating in parallel:

- A multiplexor which cc-bines the error output and the

standard output of the Ada program.

- An error channel collector which collects any output

from the error stream and routes it to the standard output

stream of the server via the multiplexor.

- A process which sets up the input and the output

channel vectors of the Ada program and then invokes it,

informing the other processes upon completion.

nerger.occ: This default harness is used to collect the

error output from up to some number of Ada programs and send

it to the standard output stream of the server (It does not

change.).

projh.occ: Each Ada (here PROJ.ADA) program has its own

mini harness which provides a clean interface to the program

in terms of the channels used. Main harness is used to invoke

each of the mini harnesses in parallel.

,projh2.occ: This is the dummy harness required to allow

linking of a foreign Ada program with the occam libraries.

main.lnk: Gives the file list to link.

V1. The files needed for multiple transputers are

mainly the same but they should be modified according to the

network and presented below:

makefile

family. inv

proj?.Inv: They should be as many as the number of

transputers.

37

mainh. ocC

merger. 0cC

proj?h.occ: They should be as many as the number of

transputers.

proj?h2.occ: They should be as many as the number of

transputers.

main.pgu: This is the only file not needed for one

single transputer. It describes which virtual channels are

equal to which physical channels.

Main. Ink

An example is provided in Appendix C containing all

these files, and it does not need to be changed for similar

applications. In Figure 16 all these relations are shown.

38

0M He testjam hind
common.ada test M) 0

proi Lada 'tompile binc Proj 1'0

ifinkIomvileom He
LoAada Sp projlh.c

proj1h.m8

proj1h.occ occam

projlhAs

projlh2.occ c proj W.tax
()CcM C hink ico

occam
merger.occ

me rger.
mainh.c8s

m, a in. tbwwtdl =ry"mainh.m8s mainh.m8s

projOh.occ)occam

projOh.t8s main.pgm

projW.occ proj0h1taxL

cam
mainh. mainh.t8s

Figure 17: Diagram Of The Steps Involved In Program Development
Using Alsys Ada On Transputers

39

V. A MULTICOMPUTER ALGORITHM

This chapter introduces a parallel algorithm for the WRLCP

problem. In the first section we present the implementation

on an INMOS Transputer network using Alsys Ada. In the second

section we discuss a variant of that algorithm that uses less

communication traffic.

A. IMPLEMZNTATION

To simplify development of the algorithm, we made every

possible effort to have it treat all processors symmetrically.

This approach allows the algorithm to be scalable for a

different number of processors without much change. We show

the pseudocode for a version of the algorithm running on two

processors in Figure 17.

The Root Transputer, which is the only Transputer having

direct connection with the host PC, reads the data file and

sends equal portions of the grid to other processors. At the

beginning of the computation the Root Transputer sends the

values of the threshold, the stride, the number of processors,

the source and goal points to every processor. All the

processors generate the weights on edges. All of them start

cost minimization at the same time. Every processor updates

the values of the grid points in its portion of the grid. For

the points that are at the border of the grid portion assigned

to a processor, the costs of the data obtained from the

neighboring processor at the previous iteration are used. At

40

To find the Weighted Region Least Cost Path on
two processors

e Two dimensional grid of points: GRID
Source point: (is,3s)
Goal point: (ig,jg)
Threshold: T

Qta=]a Cost of minimization from source to goal: Cost
The minimum path from source to goal:
(is,is) (ig,jg)

Initialize
Reed the.d~tt file
write(initial grid data)
for all nodes loop
calculate weight(i,j)

end loop
write(source,goal,n,p,threshold)
flag = true
while flag loop

flag = false
for all nodes loop

write(border costs) -- exchanging the costs on border
read (border costs) -- nodes
find minimum value
change = node(ij).oldcost-node(i,j).current_cost
if change > T then

raise flag
end if

end loop
write(flag) -- checking termination code
read(flag)

end loop
read(minimized costs) -- for integration the solution, it

-- gets what the other processor did
output the WRLCP

Figure 18: Psuedocode For Parallel Algorithm
From The One Processor's Point Of View.
The Other Processor Will Have Read and Writes
Interchanged.

the end of the computation of an iteration, neighboring

processors exchange values of the border grid points to be

used in a later iteration. After every iteration, the

41

processors, as a whole check each other to decide whether to

stop or to continue. If they decide that an adequate solution

has been found they stop. All the processors write the

obtained costs back to the Root Transputer which then displays

the least cost path from the source to the goal points given.

The pattern for "WRITE and READ" between the processors is

shown in Figure 18. Other correct patterns exist, but it

should be emphasized that a very important issue is deadlock

avoidance.

zROaS9R-1a

INITIAL GRID DATA "_ _
WRITE " READ

SOURCE, GOAL, N, P, THRESHOLD
WRITE , READ

WRITE • READ

EXCHANGING BORDER COSTS
READ "WRITE

WRITE " "- READ
--HECKING TERMINATION CODE

READ FL•AG WRITE

MINIMUM COST VALUES _

REWRITE
INTEGRATING SOLUTION

Figure 19: Write and Read Patterns

42

We have a running program on two processors, which is

presented in appendix C. Furthermore, the methodology can be

applied to more processors. Different patterns can be used to

partition the grid graph on a number of processors.In Figure

19 it is shown how the grid can be partitioned in different

possible patterns, e.g. for four processors.

procemaors processors processors

1
2. 2

GRID 1 2 3 4
3

4 3

Figure 20: Patterns for Partitioning

B. A VARIANT ALGORITHM THAT SAVES ON COIAIUNICATION

The cost of communication can be very large since we have

to exchange all the border values and checking parameters

between the neighbor processors throughout every iteration of

cost minimization. In reality, a lot of values exchanged

across the border of the grid portions are redundant because

they can remain unchanged through more than one iteration.

That is why saving on communication becomes very important.

As we try to speed up the algorithm, the cost of communication

should not slow it down, especially if part of the

communication is pragmatically useless. We present a modified

43

algorithm that takes advantage of the previous observation.

In the modified approach, these border points which we changed

in an iteration are marked. At the beginning of the data

exchange between neighboring processors, each processor

informs its neighbor about the number of the border points

that changed. Then it proceeds to send the low cost values for

only these points. More saving on communication can be

achieved by using variant records. Unfortunately, we could not

set this to work in the current development environment.The

pseudocode for this approach is presented in Figure 20.

M i The variant algorithm that saves on

communication

for all border points node(i,j) loop
change = node(i,j).old_cost - node(i,j).current_cost
if change /= 0 then

mark node(i,j)
end if

end loop
count = number of marked nodes(i,j)
write(count)
for 1..count loop

write marked node(i,j)
end loop
read(count)
for 1..count loop

read marked node(i,j)
end loop

Figure 21: The Pseudocode For The Communication-Saver
Variant Algorithm Of The Parallel Algorithm
From The One Processor's Point Of View.
The Other Processor Will Have Read and Writes
Interchanged.

44

VI.CONCLUSIONS AND RECOMENDATIONS FOR FUTURE
RESEARCH

We have developed an efficient version of a grid based

algorithm to solve the WRLCP problem. Our algorithm shows a

significant decrease in the computation time in comparison to

the original algorithm. The experienced loss in solution

accuracy is not proportional to the saving in computation

time.

As a step towards developing a parallel version of this

algorithm on a network of Transputers using Alsys Ada, we

started developing simple parallel grid algorithm for the

WRLCP problem in the above environment. Due to difficulties

in dealing with that environment and due to lack of time, we

stopped at the stage of developing adequate parallel

algorithms for that environment, hoping that others will

pursue our efforts towards the initial goal.

The main emphasis in our parallel algorithm was compile

time partitioning and mapping of data. Garcia [GAR89]

implemented the parallel algorithm (Local, Asycnhronous and

Iterative Parallel Procedures (LAIPP) Algorithm) presented in

[SMI88] on a network of Transputers using Logical C.

Scheduling was dynamic by farming out computations to

available processors. Garcia's results showed that at a

certain point, increasing the number of processors decreased

the speedup. We attribute this to excessive communication

45

delays involved in the scheduling. We directed our effects

towards nearest-neighbor patterns of communication, and we

believe that this appropriate approach to handle this problem.

Many problems need yet to be solved. As a starting point,

software tools for automatic generation of Ada harnesses, and

automatic mapping of Ada programs need to be acquired. This,

and upgrade in the existing hardware setup will bring about

more rapid program development. Currently, the process of

program developing in that environment is extremely tedious.

First order improvement to the existing parallel

algorithms can be attained by using variant records for

communication across channels.

More serious improvement include:

- designing an asynchronous version of the parallel

algorithm (data will be communicated only when needed),

- using queues or heaps can decrease the computations,

- using the routing library developed in [FAL92] might

provide us a way to compare our algorithm to more efficient

algorithms that are not constrained to nearest neighbors.

During the course of our work, we encountered problem with

theoretical flavor which yet to be solved:

- ensure that edge and node elimination in the algorithm

(to reach a parallel analog of the modified sequential

algorithm) does not separate the grid graph into different

connected components.

46

LIST OF RZFERENCRS

[AH083] Aho, A. V., Hopcraft, J. E., Ullman, J.D., "Data

Structures and Algorithms', Addison-Wesley, Inc.,

1983.

[ALS90] Alsys Inc. "PC Mothered Transputer Cross Compilation

User Manuals', Alsys, Burlington, MA, May 1990.

[FAL92] Falcao, A. G. M., "Allocation of Periodic Tasks With

Precedences on Transputer-Based Systems', Master's

Thesis, Naval Postgraduate School, Department of

Electrical Engineering, Monterey, California,

September 1992.

(GAR89] Garcia, I., "Solving The Weighted Region Least Cost

Path Problem Using Transputers", Master's Thesis,

Naval Postgraduate School, Department of Computer

Science, Monterey, California, December 1989.

[HAB87] Haberman, R., "Elementary Applied Partial

Differential Equations with Fourier Series and

Boundary Values', Prentice-Hall, Inc., 1987.

tHEC87] Hecht, E., NOptics', Addison-Wesley, Inc., 1987.

47

[KIN91] Kindl, R. M., Shing, M., Rowe, N. C., OA Stochastic

Approach To The Weighted - Region Problem: I. The

Design Of The Path Annealing Algorithm II.

Performance Enhancement Techniques and Experimental

Results', Technical Report, Naval Postgraduate

School, Department of Computer Science, Monterey,

California, June 1991.

[MAN89] Manber,U., "Introduction To Algorithms", Addison-

Wesley, Inc., 1989.

[OCC88] INMOS Limited, "Occam 2 Reference Manual', Prentice

Hall International Ltd., 1988.

[OCC89] IA4MOS Limited, 'Occam 2 Toolset User Manual', INMOS

Document Number 72 TDS 184 00, 1989.

(QUI87] Quinn, J. M., -Designing Efficient Algorithms For

Parallel Computers", McGraw-Hill, Inc., 1987.

[RIC87] Richbourg, F. R., "Solving a Class of Spatial

Reasoning Problems: Minimal-Cost Path Planning in

the Cartesian Plane', Ph.D. Thesis, Naval

Postgraduate School, Department of Computer

Science, Monterey, California, June 1987.

[SM188] Smith, T. R., Peng, G., Gahinet, P., "A Family of

Local, Asynchronous, Iterative and Parallel

48

Procedures For Solving The Weighted Region Least

Cost Path Problem', Technical Report, Department of

Computer Science, University of California at Santa

Barbara, 20 April 1988.

[TRA87] INMOS Limited, "Transputer Reference Manual',

Prentice Hall Int. Ltd, January 1987.

[YUK9l] Yuktadatta, P., "Simulation Of A Parallel Processor

Based Small Tactical System', Master's Thesis,

Naval Postgraduate School, Department of Computer

Science, Monterey, California, December 1991.

49

APPENDIX A: SEQUENTIAL ALGORITHM SOURCE CODE

-- Title : STRAIGHT-FORWARD ALGORITHM
-- Author : CENGIZ EKIN

-- Date : 20/06/92
-- Revised : 04/10/92
-- Course : THESIS
-- Compiler: MERIDIAN ADA
-- Description:Reads data from file, input starting and goal
points -- finds the minimum cost path.
with TEXT_IO,OSTYPES, TASK_CONTROL, CALENDAR;
use TEXTIO,OS_TYPES, CALENDAR;

procedure MAIN1 is

package INTEGER_INOUT is new INTEGER_IO(INTEGER);
package FLOATINOUT is new FLOATIO(FLOAT);
use FLOAT_INOUT,INTEGERINOUT;

START-TIME ,
END_TIME : FLOAT;

SX,SY,GX,GY,I,J :INTEGER;
Q :STRING(l..) . "y";
VOLTA,VOLT :INTEGER;
NOP :INTEGER :=80;
E,COUNTER :INTEGER;
El,SQ :STRING(l..5);
type ELER is

record
WEIGHT : INTEGER;
DISTANCE : INTEGER;

end record;
type GRID_POINT is

record
CURRENTCOST,
OLD_COST : INTEGER;
N,
E,

50

S,

W : ELER;
DIRECTION : STRING(l..5);

end record;
type GRID is array (0..(NOP +1),0..(NOP+I)) of GRID_POINT;
B : GRID;
INF : FILE_TYPE;

type STORAGE is array (1..1000) of INTEGER;
type STORAGE1 is array (I..1000, of STRING(I..5);
type STACK is

record
STORE :STORAGE;
LATEST :INTEGER := 0;

end record;
type STACK1 is

record
STORE :STORAGE1;
LATEST :INTEGER := 0;

end record;

S : STACK;S1 STACK1;

-- This part is for the insertion of values into the STACK.

procedure PUSH (S : in out STACK; E : in INTEGER) is

begin

S.LATEST := S.LATEST + 1;
S.STORE(S.LATEST) := E;

end PUSH;

procedure PUSH1 (SI : in out STACK1; El : in STRING) is

begin

SI.LATEST := SI.LATEST + 1;

SI.STORE(SI.LATEST) := El;
end PUSH1;

-- This part is to print the values from the STACK.

51

procedure POP (S : in out STACK; E : out INTEGER) is

begin

E := S.STORE(S.LATEST);
S.LATEST := S.LATEST - 1;
end POP;

procedure POP1 (SI : in out STACK1; El : out STRING) is

begin

El := Sl.STORE(Sl.LATEST);
S1.LATEST := S1.LATEST - 1;
end POPI;

-- This function computes the execution time (CPU TIME).

function CLOK return FLOAT is
function CLOCK return int ;
pragma INTERFACE(C, CLOCK);
T : int;
S : FLOAT;
begin

taskcontrol.preemptionoff;
T := CLOCK;
if T = -1 then

raise TIMEERROR;
else

S := FLOAT(T)/l.0E6;
end if;
task_control.preemptionon;
return S;

end CLOK;

procedure CAL_WEIGHT (I,J in INTEGER) is
begin
If I = NOP then

B(I,J).N.WEIGHT := -1;
B(I,J).N.DISTANCE := -1;
B(I+l,J).CURRENTCOST :=10000;

else
B(I,J).N.WEIGHT :=l+ ABS(B(I,J).CURRENT_COST -

52

t3(I+l,J) .CURRENT_ýCOST);
end if;
If J = NOP then

B(I,J).E.WEIGHT -;
B(I,J).E.DISTANCE :=-1;

B(I,J+l) .CURRENTCOST :=10000;
else

B(I,J) .E.WEIGHT := l+ABS(B(I,J) .CVRRENT_COST-
B(I,J+l) .CURRENT_COST);

end if;
If I = 1 then

* ~~B(I,J).S.WEIGHT : 1
B(I,J).S.DISTANCE : 1

* B(I-l,J) .CURRENTý_COST :=10000;
else

B(I,J) .S.WEIGHT :=l+ ABS(B(IJ) .CURRENTCOST -B(I-

l,J) .CtJRRENT_COST);

end if;
If J = 1 then

B(I,J).W.DISTANCE : 4
B(I,J-l) .CURRENT_COST :=10000;

else
B(I,J) .W.WEIGHT :=l+~ ABS(B(I,J) .CURRENT_COST - B(I,J-

1) .CURRENT_-COST;
end if;

end CAL_WEIGHT;

procedure FINDMIN (I,J :in INTEGER) is
begin
if B(I,J) .CURRENT_COST > (B(I+1,J) .CURRENTý_COST

+abs(B(I,J) .N.WEIGHT)) then
B(I,J) .CURRENTCOST :=(B(I-1,J) .CURRENTCOST

+abs(B(I,J) .N.WEIGHT));
B(I,J).DIRECTIONq : "NORTH";

end if;
if B(I,J) .CU2RRENT_COST > (B(I,J+1) .CURRENT_COST

+abs(B(I,J) .E.WEIGHT)) then

B(I,J).CURRENT_COST :=(B(I,J-+1) .CURRENT_COST

B(I,J).DIRECTION "= EAST N

end if;
if B(I,J) .CURRENTCOST > (B(I-l,J) .CURRENT_COST

53

÷abs(B(I,J).S.WEIGHT)) then
B(I,J).CURRENT_COST (B(I-I,J).CURRENT_COST

+abs(B(I,J).S.WEIGHT));
B(I,J).DIRECTION "SOUTH";

end if;
if B(IJ).CURRENT_COST > (B(I,J-l).CURRENT_COST

÷abs(B(IJ) .W.WEIGHT)) then
B(I,J).CURRENTCOST (B(I,J-l).CURRENTCOST

+abs(B(I,J).W.WEIGHT));
B(I,J).DIRECTION "WEST ";

end if;
end FINDMIN;

-- Main program ...

begin

while Q = "y" loop
COUNTER := 1;
for I in 1 .. NOP loop

for J in 1 .. NOP loop
B(I,J).N.DISTANCE :=1;
B(I,J).E.DISTANCE :=l;
B(I,J).S.DISTANCE :=I;
B(I,J).W.DISTANCE :=1;

end loop;
end loop;
OPEN (INF,MODE => IN-FILE, NAME => "ter.dat");
PUT ("THE DIMENSION OF MATRIX =
GET (NOP);
PUTLINE ("ENTER THE VOLTA (the optimization tolerance)");
PUT ("VOLTA = ");GET (VOLTA);
PUTLINE ("ENTER THE SOURCE POINT !");
PUT("SX = ");GET (SX);PUT("SY = ");GET(SY);
PUTLINE ("ENTER THE GOAL POINT !");
PUT("GX = ");GET (GX);PUT("GY = ");GET(GY);

-- CLOK function begins to compute the execution time.
STARTTIME := CLOK;

-- This part gets the heights from the file..

for ROW in 1..NOP loop

54

for COL in 1..NOP loop
GET (INF, B(ROWCOL).CURRENT_COST);

end loop;
end loop;

-- CLOK function finishes the computation of execution time.
ENDTIME := CLOK;
PUT("TOTAL TIME TO READ THE DATA FILE IS
PUT(END_TIME-START_TIME,4,4,0);new_line;

STARTTIME := CLOK;

-- It determines the borders and calculates the weights of the
edges..

for I in 1.-.NOP loop
for J in 1..NOP loop

CAL_WEIGHT(I,J);
end loop;

end loop;

-- It makes the costs max number in order to use them in
comparisons for finding
-- the minimum

for I in 1 ..- NOP loop
for J in 1 .. NOP loop

B(I,J).CURRENTCOST := 10000;
B(I,J).OLD COST B(I,J).CURRENTCOST;

end loop;
end loop;

-- cost minimization...

B(SX,SY).CURRENT_COST := 0;
while COUNTER > 0 loop

COUNTER := 0;
for I in 1..NOP loop

for J in 1..NOP loop
FINDMIN(I,J);
VOLT := B(I,J).OLD_COST -B(I,J).CURRENTCOST;
if VOLT > VOLTA then

COUNTER := COUNTER +1;

end if;

55

B(I,J) .OLD-COST :=B(I,J) .CURRENT_COST;
end loop;

end loop;
end loop;

--output of least cost path..

loop
PUSH(S,B(GX,GY) .CURRENTCOST);
PUSHi (S1,B(GX,GY) .DIRECTION);
SQ :=B(GX,GY) .DIRECTION;
if SQ = "NORTH" then

PUSH(S,B(GX,GY) .N.DISTANCE);
GX :=GX+1;

elsif SQ ="EAST " then
PUSH(S,B(GX,GY) .E.DISTANCE);
GY :=GY+l;

elsif SQ = "SOUTH" then
PUSH(S,B(GXGY) .S.DISTANCE);
GX :=GX-1;

elsif SQ = "WEST " then
PUSH(S,B(GX,GY) .W.DISTANCE);
GY := GY-l;

else
exit;
end if;

exit when GX =SX and GY =SY
end loop;

PUTjINE(-- DISTANCE COST DIRECTION*);
PUTý_LINE(" -------- U); -----

loop
POP(S,E);PUT(E);PUT (m

POP(SE);PUT(E);PUT ()

POPI (S1, El) ;
it El = "NORTH" then

PUT ("SOUTH");newý_line;
elsif El = "EAST N then

PUT ("WEST") ;newjline;
elsif El = "SOUTH" then

PUT ("NORTH") ;newjline;
elsif El = "WEST " then

PUT ("EAST") ;newjline;

56

end if;

exit when S.LATEST =0;
end loop;

CLOSE(INF);
-- CLOK function finishes the computation of execution time.
ENDTIME := CLOK;
PUT("TOTAL TIME TO EXECUTE THE PROGRAM IS
PUT(ENDTIME-STARTTIME, 4,4,0);newjine;
PUT("RUN ONE MORE TIME :y(es) or n(o) :");GET(Q);
if Q = "n" then exit;
end if;
end loop;
end MAINl;

57

APPENDIX B: MODIFIED ALGORITHM SOURCE CODE

-- Title : MODIFIED ALGORITHM
-- Author : CENGIZ EKIN
-- Date : 20/06/92
-- Revised : 04/10/92
-- Course : THESIS
-- Compiler: MERIDIAN ADA
-- Description:modified program, searches and deletes nodes
and ---- edges
with TEXT_IO,OSTYPES, TASKCONTROL, CALENDAR;
use TEXTIO,OS_TYPES, CALENDAR;

procedure MAIN2 is

package INTEGERINOUT is new INTEGER_IO(INTEGER);
package FLOATINOUT is new FLOATIO(FLOAT);
use FLOAT_INOUT, INTEGERINOUT;

START_TIME
END_TIME : FLOAT;

SX,SY,GX,GY,Z,C02,CO3,C04,CO5 :INTEGER;
E,COUNTER,I,J,L :INTEGER;
E1,SQ :STRING(1..5);
Q :STRING(1..1) :=
DELl,A,VOLTA,VOLT :INTEGER;
NOP :INTEGER 80;--500;
MARK :BOOLEAN;
type ELER is

record
WEIGHT : INTEGER;

DISTANCE : INTEGER;
end record;

type GRID_POINT is
record

CURRENT-COST,
OLDCOST INTEGER;

58

N,

E,
S,

W ELER;
DIRECTION : STRING(I..5);
ACTIVE : BOOL2AN;

end record;
type GRID is array (0..(NOP +1),0..(NOP+1)) of GRIDPOINT;
B :GRID;
INF : FILETYPE;

type STORAGE is array (1..1000) of INTEGER;
type STORAGE1 is array (1..1000) of STRING(I..5);
type STACK is

record
STORE :STORAGE;
LATEST :INTEGER := 0;

end record;
type STACK1 is

record
STORE :STORAGE1;
LATEST :INTEGER := 0;

end record;

S : STACK;S1 STACK1;

-- This part is for the insertion of values into the STACK.

procedure PUSH (S : in out STACK; E : in INTEGER) is

begin

S.LATEST := S.LATEST + 1;
S.STORE(S.LATEST) := E;

end PUSH;

procedure PUSH1 (SI : in out STACK1; El : in STRING) is

begin

SI.LATEST := S1.LATEST + 1;
SI.STORE(SI.LATEST) := El;

end PUSH1;

59

-- This part is to print the values from the STACK.

procedure POP (S : in out STACK; E : out INTEGER) is

begin

E := S.STORE(S.LATEST);
S.LATEST := S.LATEST - 1;
end POP;

procedure POP1 (SI : in out STACKI; El : out STRING) is

begin

El := SI.STORE(Sl.LATEST);
SI.LATEST := SI.LATEST - 1;
end POP1;

-- This function computes the execution time (CPU TIME).

function CLOK return FLOAT is
function CLOCK return int ;
pragma INTERFACE(C, CLOCK);
T : int;
S : FLOAT;

begin
taskcontrol.preemptionoff;

T := CLOCK;

if T = -1 then
raise TIME_ERROR;

else
S := FLOAT(T)/I.0E6;

end if;

task.control.preemption_on;
return S;

end CLOK;

procedure CAL_WEIGHT (I,J : in INTEGER) is

60

begin
If I =NOP then

B(IJ).N.WEIGHT -;
B(I,J).N.DISTANCE :=-1;
B(I+1,J) .CURRENT_COST :=10000;

else
B(I,J) .N.WEIGHT :=I+ ABS(B(I,J) .CURRENTCOST-

B(I+1,J) .CURRENTCOST);
end if;
If J = NOP then

B(IJ).E.DISTANCE := -1;
B(I,J+l) .CURRENT_COST :=10000;

else
B(I,J) .E.WEIGHT := +ABS(B(I,J) .CURRENTCOST

B(I,J+l) .CURRENT__COST);
end if;
If I = 1 then

B(I,J).S.WEIGHT -1
B(I,J).S.DISTANCE :=-1;
B(I-l,J) .CURRENT_COST :=10000;

else
B(I,J).S.WEIGHT.:=1+ ABS(B(I,J).CURRENT_COST -B(I-

1,J) .CURRENTCOST);
end if;

If J = 1 then
B(I,J).W.WEIGHT := -1;
B(I,J).W.DISTANCE := -1;
B(I,J-l) .CURRENTý_COST :=10000;

else
B(I,J) .W.WEIGHT :=l+ ABS(B(I,J) .CURRENT_COST - B(I,J-

1) .CURRENTCOST);
end if;

end CAL_WEIGHT;

*procedure FIND__MIN (I,J in INTEGER) is
begin

if B(I,J).ACTIVE =TRUE then
if B(I,J).N.DISTANCE /= -1 then
if B(I,J) .CURRENT_COST >

(3((I+abs(B(I,J).N.DISTANCE)),J).CURRENT_COST
i-abs(B(I,J) .N.WEIGHT)) then

B(I,J) .CURRENT_COST

61

(B((I+abs(B(I,J).N.DISTANCE))kJ).CURRENTCOST
+abs(B(i,J) .N.WEIGHT));

B(IJ).DIRECTION "NORTH";
end if;
end if;
if B(IJ).E.DISTANCE /= -1 then
if B(I,J) .CURRENT_COST >

(B(I, (J+abs(B(I,J) .E..DISTANCE))) .CURRENTCOST
+abs(B(I,J) .E.WEIGHT)) then

B(I,J) .CURRENT_COST :

(B(I,(J+abs(B(I,J).E.DISTANCE))).CURRENTCOST
+abs(B(I,J) .E.WEIGH-T));

B(I,J).DIRECTION "EAST "

end if;
end if;
if B(I,JV.S.UISTANCE /= -1 then
if BCI,J) .CURRENTCOST > (B((I-

abs(B(I,J).S.DISTANCE)),J).CURRENTCOST
+abs(B(I,J) .S.WEIGHT)) then

B(I,J).CURRENT__COST :=(B((I-
abs(B(I,J).S.DISTANCE)),J).CURRENTCOST

B(I,J).DIRECTION "SOUTH";
end if;
end if;
if B(I,J) .W.DISTANCE /= -1 then
if B(IJ) .CURRENT_COST > (B(I, (J-

abs(B(I,J).W.DISTANCE)W.CURRENT_COST
+abs(B(I,J) .W.WEIGHT)) then

B(I,J) .CURRENT_COST :=(B(I, (J-
abs(B(I,J) .W.DISTANCE))) .CURRENT_COST

+abs(B(I,J) .W.WEIGHT));
B(I,J).DIRECTION "WEST "

end if;
end if;
end if;

end FIND_..MIN;

-- Mair. program ...

begin
while Q = "y" loop
MARK := TRUE;

62

COUNTER := 1;
for I in 1 .. NOP loop

for J in 1 .. NOP loop
B(IJ).N.DISTANCE :=l;
B(I,J).E.DISTANCE :=l;
B(I,J).S.DISTANCE :=I;
B(IJ).W.DIST1NCE :=1;

B(I,J).ACTIVE :=TRUE;
end loop;

end loop;
OPEN (INF,MODE => IN_FILE, NAME => "ter.dat");
PUT ("THE DIMENSION OF MATRIX =");
GET (NOP);
PUT_LINE ("ENTER THE DELTA (the jumping value).");
PUT ("DELl = ");GET (DELl);

PUT_LINE ("ENTER THE VOLTA (the optimization tolerance).");
PUT ("VOLTA = ");GET (VOLTA);
PUT_LINE ("ENTER THE SOURCE POINT !");

PUT("SX = ");GET (SX);PUT("SY = ");GET(SY);
PUT_LINE ("ENTER THE GOAL POINT !");

PUT("GX = ");GET (GX);PUT("GY = ");GET(GY);

-- CLOK function begins to compute the execution time.
STARTTIME := CLOK;

-- This part gets the heights from the file..

for ROW in 1.-.NOP loop
for COL in 1..NOP loop

GET (INF, B(ROW,COL).CURRENT_COST);
end loop;

end loop;

-- CLOK function finishes the computation of execution time.
ENDTIME := CLOK;

PUT("TOTAL TIME TO READ THE DATA FILE IS
PUT(END_TIME-STARTTIME,4,4,O);newline;
START_TIME := CLOK;

-- It determines the borders and calculates the weights of the
edges..

63

for I in 1.-.NOP loop
for J in 1..NOP loop

CALWEIGHT(I,J);
end loop;

end loop;

-- It makes the costs max number in order to use them in
comparisons -- for finding the minimum

for I in 1 .. NOP loop
for J in 1 .. NOP loop

B(I,J).CURRENT_COST := 10000;
B(I,J).OLDCOST B(I,J).CURRENT_COST;

end loop;
end loop;

-- horizontal search..

B(SX,SY).CURRENT_COST := 0; I:=l;J:=l;
loop

A B(I,J).E.WEIGHT;
C02 0;
if A <= DELl then

loop
exit when (A > DELl) ;
if (J>=NOP) then exit; end if;

if((I=SX and J=SY) or (I=GX and J=GY)) and (MARK =TRUE)
then

MARK := FALSE;exit; end if;
MARK TRUE;
J :=J + ;
C02 C02 - 1;
A A + B(I,J).E.WEIGHT;

end loop;
if C02 > 0 then
B(I,J-CO2).E.WEIGHT A - B(I,J).E.WEIGHT;
B(I,J-CO2).E.DISTANCE C02;
B(I,J).W.WEIGHT B(I,J-CO2).E.WEIGHT;

B(I,J).W.DISTANCE B(I,J-CO2).E.DISTANCE;
end if;

else
J J + 1;

64

end if;
if J = NOP then

I :=I + 1;
J := ;

end if;
exit when I = NOP + 1;

end loop;

-- horizontal edge eliminating...

C03 := 0; J := l;I :=l;
loop

if B(I,J).E.DISTANCE > 1 then
Z := B(I,J).E.DISTANCE + J;
loop

J := J+l;
exit when J = Z;
B(IJ).E.DISTANCE -1;
B(I,J).W.DISTANCE :=-1;
C03 := C03 + 2;

end loop;
else
J := J+l;
end if;
if J = NOP then
I I + 1;
J : i;
end if;
exit when I = NOP + 1;

end loop;

-- vertical search...

I := I;J:=l;MARK := TRUE;
loop

A := B(I,J).N.WEIGHT;
C02 := 0;
if A <= DELl then

loop
exit when (A > DELl) ;
if (I>=NOP) then exit; end if;

if((I=SX and J=SY) or (I=GX and J=GY)) and (MARK =TRUE)
then

65

MARK := FALSE;exit; end if;
MARK TRUE;
I :=I + 1;
C02 C02 + 1;
A A + B(I,J).N.WEIGHT;

end loop;
if C02 > 0 then
B(I-CO2,J).N.WEIGHT A - B(I,J).N.WEIGHT;
B(I-CO2,J).N.DISTANCE C02;
B(I,J).S.WEIGHT B(I-CO2,J).N.WEIGHT;
B(I,J).S.DISTANCE B(I-CO2,J).N.DISTANCE;
end if;

else
I := I + 1;

end if;
if I = NOP then

J := J + 1;
I 1= ;

end if;
exit when J = NOP + 1;

end loop;

-- vertical edge eliminating...

I := l;J:=l;
loop

if B(I,J).N.DISTANCE > 1 then
Z := B(IJ).N.DISTANCE + I;
loop

I := I+1;
exit when I = Z;
B(I,J).N.DISTANCE := -1;
B(I,J).S.DISTANCE -1;
C03 := C03 + 2;

end loop;
else

I := I+l;
end if;
if I = NOP then

J := J + 1;
I := 1;
end if;
exit when J = NOP + 1;

66

end loop;

-- node eliminating ...

Co5 := O;J :=l;I:=l;
for I in 1 .. NOP loop

if not(I=SX and I=SY) and not(I=GX and I=GY) then
C04 := 0;
if B(I,I).N.DISTANCE < 1 then

C04 := C04 + 1;
end if;
if B(II).E.DISTANCE < 1 then

C04 := C04 + 1;
end if;
if B(I,I).S.DISTANCE < 1 then

C04 := C04 + 1;
end if;
if B(I,I).W.DISTANCE < I then

C04 := C04 + 1;
end if;
if C04 >= 3 then

B(I,I).ACTIVE := FALSE;
if B(I,I).N.DISTANCE /= -1 then

B((I+abs(B(I,I).N.DISTANCE)),I) .S.DISTANCE : i

B(I,I).N.DISTANCE -1;

C03 :=C03 + I;
end if;

if B(I,I).E.DISTANCE /= -1 then
B(I,(I+abs(B(I,I).E.DISTANCE))).W.DISTANCE -1;
B(I,I).E.DISTANCE -i;
C03 :=C03 + 1;

end if;
if B(I,I).S.DISTANCE /= -1 then

B((I-abs(B(I,J).S.DISTANCE)),J).N.DISTANCE -1;
B(I,I).S.DISTANCE -1;
C03 :=C03 + 1;

end if;
if B(I,I).W.DISTANCE /= -1 then

B(I,(I-abs(B(I,I).W.DISTANCE))).E.DISTANCE -1;
B(II).W.DISTANCE := -1;
C03 :=C03 + 1;

end if;

67

C05 :=C05 +1;
end if;

end if;
for J in 1+1 .. OP loop

C04 :=0;
if not(I=SX and J=SY) and not(I=GX and J=GY) then
if B(IJ).N.DISTANCE < 1 then

C04 :=C04 + 1;

end if;
if B(I,J).E.DISTANCE < 1. then

C04 :=C04 + 1;
end if;
if B(I,J) .S.DISTANCE < 1 then

C04 :=C04 + 1;
end if;
if B(I,J).W.DISTANCE < 1 then

C04 :=C04 + 1;

end if;
if C04 >= 3 then

B(I,J)VACTIVE :=FALSE;
if B(I,J).N.DISTANCE /= -1 then

B((I~iabs(B(I,J).N.DISTANCE)),J).W.DISTANCE -;
B(I,J).N.DISTANCE --1;
C03 :=C03 + 1;

end if;
if B(I,J).E.DISTANCE 1=-1 then

B(I,(J+abs(B(I,J).E.DISTANCE))).W.DISTANCE -;

B(I,J).E.DISTANCE -1;

C03 :=C03 + 1;
end if;
if B(IJ).S.DISTXNCE 1=-1 then

B((I-abs(B(I,J).S.DISTANCE)),J).N.DISTANCE-;
B(I,J).S.DISTANCE -1;
C03 :=C03 + 1;

end if;
if B(I,J).W.DISTANCE =-21 then

B(I,(J-abs(B(I,j).W.DISTANCE))).E.DISTANCE -;

B(I,J).W.DISTANCE :=-1;

C03 :=C03 + 1;
end if;

C05 :=C05 +1;
end if;
end if;

68

C04 0;
if not(J=SX and I=SY) and not(J=GX and I=GY) then

if B(J,I).N.DISTANCE < 1 then
C04 := C04 + 1;

end if;
if B(J,I).E.DISTANCE < 1 then

C04 := C04 + 1;
end if;
if B(J,I).S.DISTANCE < 1 then

C04 := C04 + 1;
end if;
if B(J,I).W.DISTANCE < 1 then

C04 := C04 + 1;
end if;
if C04 >= 3 then

B(J,I).ACTIVE := FALSE;
if B(J,I).N.DISTANCE /= -1 then

B((J+abs(B(J,I).N.DISTANCE)),I).S.DISTANCE -1;
B(J,I).N.DISTANCE -1;

C03 :=C03 + 1;
end if;
if B(J,I).E.DISTANCE 1= -1 then

B(J,(I+abs(B(JI).E.DISTANCE))).W.DISTANCE -1;
B(J,I).E.DISTANCE -1;
C03 :=C03 + 1;

end if;
if B(J,I).S.DISTANCE /= -1 then

B((J-abs(B(J,I).S.DISTANCE)),I).N.DISTANCE -1;
B(J,I).S.DISTANCE -1;

C03 :=C03 + 1;
end if;
if B(J,I).W.DISTANCE /= -1 then

B(J,(I-abs(B(J,I).W.DISTANCE))).E.DISTANCE -1;
B(J,I).W.DISTANCE -1;
C03 :=C03 + 1;

end if;
CO5 := C05 +1;

end if;
end if

end loop;
end loop;

put (co5);

69

-- cost minimization...

while COUNTER > 0 loop
COUNTER := 0;
for I in I..NOP loop

for J in 1..NOP loop
FIND_MIN(I,J);
VOLT := B(I,J).OLD_COST -B(I,J).CURRENT_COST;
if VOLT > VOLTA then

COUNTER COUNTER +1;
else

COUNTER COUNTER;
end if;
B(I,J).OLD_COST := B(I,J).CURRENT_COST;

end loop;
end loop;

end loop;

-- output of least cost path..

loop
PUSH(S,B(GX,GY).CURRENTCOST);
PUSH1 (Sl,B(GX,GY).DIRECTION);
SQ :=B(GX,GY).DIRECTION;
if SQ = "NORTH" then

PUSH(S,B(GX,GY).N.DISTANCE);
GX := GX+B(GX,GY).N.DISTANCE;

elsif SQ = "EAST " then
PUSH(S,B(GX, GY) .E.DISTANCE);
GY := GY+B(GX,GY).E.DISTANCE;

elsif SQ = "SOUTH" then
PUSH(SB(GX,GY).S.DISTANCE);
GX := GX-B(GX,GY).S.DISTANCE;

elsif SQ = "WEST " then
PUSH(S,B(GX,GY).W.DISTANCE);
GY := GY-B(GX,GY).W.DISTANCE;

else
exit;
end if;

exit when GX =SX and GY =SY ;
end loop;

PUT_LINE(" DISTANCE COST DIRECTION");

70

PUTLINE (" "--)

loop
POP(S,E);PUT(E);PUT (");
POP(S,E);PUT(E);PUT (.

POP1 (SI, El) ;
if El = "NORTH" then

PUT ("SOUTH");newline;
elsif El = "EAST " then

PUT ("WEST");newjline;
elsif El = "SOUTH" then

PUT ("NORTH");new_line;
elsif El = "WEST " then

PUT ("EAST");new_line;
end if;

exit when S.LATEST =0;
end loop;

CLOSE(INF);
-- CLOK function finishes the computation of execution time.
ENDTIME := CLOK;
PUT ("TOTAL TIME TO EXECUTE THE PROGRAM IS
PUT(ENDTIME-START_TIME,4,4,0);newIine;
PUT("RUN ONE MORE TIME :y(es) or n(o) :");GET(Q);
if Q = "n" then exit;
end if;
end loop;
end MAIN2;

71

APPENDIX C: PARALLEL ALGORITHM SOURCE CODE

-- Title : PROJO.ADA
-- Author : CENGIZ EKIN
-- Date : 20/06/92
-- Revised : 04/10/92
-- Course : THESIS
-- Compiler: ALSYS ADA
-- Description:Reads data from file, input starting and goal
-- points,finds the minimum cost path.

with TEXTIO, COMMON, CHANNELS;
use COMMON;
procedure PROJO is

package INTEGERINOUT is new TEXT_IO.INTEGER_IO(INTEGER);
package FLOAT_INOUT is new TEXTIO.FLOATIO(FLOAT);
use FLOAT_INOUT,INTEGERINOUT;
INF : TEXT_IO.FILE_TYPE;
B : GRID;GRI :GRID_POINT;
counter : integer :=l;
-- communication channels that are used
OutToMars : CHANNELS.CHANNELREF

CHANNELS.OUTPARAMETERS (2);
InFromMars : CHANNELS.CHANNELREF

CHANNELS.IN_PARAMETERS (2);

-- This procedure calculates the weights on edges and builds
up an hyphotetical
-- wall for processes to stay in the terrain...

procedure CALWEIGHT (I,J : in INTEGER) is
begin

If I = 10 then
B(I,J).N.WEIGHT -1;
B(IJ).N.DISTANCE := -1;
B(I+I,J).CURRENTCOST :=10000;

else
B(I,J).N.WEIGHT :=l+ ABS(B(I,J).CURRENT_COST -

B(I+I,J).CURRENT_COST);
end if;
If J = 10 then

72

B(I,J).E.WEIGHT -1
B(I,J).E.DISTANCE -1;
B(I,J+1) .CURRENTCOST :=10000;

else
B(I,J) .E.WEIGHT := 1-ABS(B(I,J) .CURRENT_CQOST-

B(I,J+l) .CURRENT_-COST);
end if;
If I = 1 then

B(I,,J).S.WEIGHT := -1;
B(I,J).S.DISTANCE := -1;
B(I-1,J) .CtJRRENTý_COST :=10000;

else
B(I,J) .S.WEIGHT :=l+ ABS(B(I,J) .CURRENT_COST-

B(I-l,J) .CURRENT_COST);
end if;
If J = 1 then

B(I,J).W.WEIGHT :=-1;
B(I,J).W.DISTANCE := -1;
B(I,J-1) .CURRENT_COST :=10000;

else
B(I,J) .W.WEIGHT :=l-l ABS(B(I,J) .CURREITT_COST

B(I,J-1) .CURRENT_COST);
end if;

end CAL_WEIGHT;

-- This part finds the minimum cost between current node and
its four
--neighbors (north, east, south,west)

procedure FIND_MIN (I,J :in INTEGER) is
begin

if B(I,J) .CURRENT_COST > (B(I+1,J) .CURRENT_COST

4-abs(B(I,J) .N.WEIGHT)) then
B(I,J) .CURRENT_COST (B(I-I1,J) .CURRENT_COST

-iabs (B(I,J) .N.WEIGHT));
B(I,J).DIRECTION "= NORTH";

end if;
if B(I,J) .CURRENTCOST > (B(I,J-i1) *CURRENT_COST

.iabs(B(I,J) .E.WEIGHT)) then
B(I,J) .CURRENTCOST (B(I,J+l) .CURRENTCOST

+abs(B(I,J) .E.WEIGHT));
B(I,J).DIRECTION :="EAST "

end if;

73

if B(I,J) .CURRENTCOST > (B(I-1,J) .CURRENT_COST
+abs(B(I,J) .S.WEIGHT)) then

B(I,J) .CURRENT_COST (B(I-1,J) .CURRENT_COST
+abs(B(I,J) .S.WEIGHT));

B(I,J).DIRECTION "SOUTH";
end if;
if B(11 J) .CURRENTCOST > (B(I,J-1) .CURRENTCOST

+abs(B(I,J) .W.WEIGHT)) then
B(I,J) .CURRENT_COST (B(I,J-1) .CURRENT_COST

+abs(B(I,J) .W.WEIGHT));
B(I,J).DIRECTION "WEST U

end if;
end1 FINDMIN;

begin
TEXT_IO.OPEN (INF,MODE => TEXT_IO.INý_FILE, NAME =>

"ter.dat");
TEXTIO.PUTLINE("'THE DIMENSION OF MATRIX =)

INTEGERINOUT. GET (N);
TEXTIO.PUT_LINE("THE NUMBER OF PROCESSORS=

INTEGERINOUT.GET(P);
TEXT_10. PUT_LINE (-ENTER THE OPTIMIZATION TOLERANCE");
INTEGERINOUT.GET (VOLTA);
TEXT_IO.PUTý_LINE ("ENTER THE SOURCE POINT !)

TEXT_IO.PUTý_LINE("1SX = "');INTEGERINOUT.GET (SX);
TEXT_IO.PUT_LINE("'SY = "');INTEGERINOUT.GET(SY);
TEXT_10. PUT_..LINE ("ENTER THE GOAL POINT !)
TEXT_10. PUTLINE (-"GX = ") ;INTEGERJINOUT.GET (GX);
TEXT_10. PUT LINE("GY = ") ;INTEGER_INOUT.GET(GY),

--This part gets the heights from the file..

for ROW in 1.-10 loop
for COL in 1.-10 loop
INTEGER_INOUT.GET (INF, B(ROW,COL) .CURRENTCOST);

end loop;
end loop;

--It passes the heights to the other processors..

for I in 1_ 5 loop
for J in 1 . .10 loop
GRI := B(I,J);

74

DATAIOoWRITE(OutToMars,GRI);
end loop;

end loop;

--It determines the borders and calculates the weights of the
edges..

for I in 6._10 loop
for J in 1._10 loop

CAL-WEIGHT(I,J);
end loop;

end loop;

--It mrakes the costs max number in order to use them in
comparisons for finding
-- the minimum

for I in 6._10 loop
for Jin 1 .. 10 loop

B(I,J) .CURRENT_COST :=10000;
B(I,J) .OLDCOST B(I,J) .CURRENT_COST;

end loop;
end loop;

--This part sends dim of matrix,no of
proccessors,volta, sourceand goal points.

GRI.CtJRRENTCOST:=N;GRI.OLDCOST:=P;GRI.N.WEIGHT:=VOLTA;
GRI.E.WEIGHT:=SX;GRI.S.WEIGHT:=SY;G'RI.W.WEIGHT:=GX;GRI.E.DIS
TANCE: =GY;
DATAIO.WRITE(OutToMars,GRI);

--cost minimization ...

B(SX,SY) .CURRENT_COST :=0;
while COUNTER > 0 loop

COUNTER :=0;
for I in 6._10 loop
for J in 1._10 loop
if I =6 then

GRI := BCI,J);
DATAIO.WRITE(OutToMars,GRI);
DATAIO.READ(InFromMars,GRI);

75

B(I-1,J) GRI;
end if;
FINDMIN(I,J);
VOLT :=B(I,J) .OLD_COST -B(I,J) .CURRENTCOST;
if VOLT > VOLTA then

COUNTER :=COUNTER +1;
end if;
B(IJ) .OLDCOST :=B(I,J) .CURRENT_COST;

end loop;
end loop;

integer inout.put(counter) ;text_io.put(" 11);

GRI.CURRENTCOST :=COUNTER;
DATAIO.WRITE(OutToMars, GRI);
DATAIO.READ(InFroznMars, CR1);
COUNTER :=GRI.CURRENT__COST;
integer_inout .put (counter);
text_io.put~line(l........................... 61);

end loop;
for I in 1 . .5 loop
for Jin 1 .. 10 loop
DATAIO.READ(InFronmlars, GRI);
B(I,J) :=GRI;

end loop;
end loop;

--output of least cost path..

loop
PtJSH(S,B(GX,GY) .CURRENTý_COST);

PUSH1 (Sl,B(GXGY) .DIRECTION);
SQ :=B(GX,GY) .DIRECTION;

if SQ = "NORTH" then
PUSH(SIB(GX,GY) .N.DI-3TANCE);
GX := GX+1;

elsif SQ = "EAST 0 then
PUSH(S,B(GX,GY) .E.DISTANCE);
GY :=GYi-l;

elsif SQ = "SOUTH" then
PUSH(S,B(GXGY) .S DISTANCE);
CX := GX-l;

elsif SQ ="WEST " then
PUSH(S,B(GX,GY) .W.DISTANCE);
GY :=GY-l;

76

else
exit;
end if;

exit when GX =SX and GY =SY
end loop;

TEXTIO.PUTLINEC"- DISTANCE COST DIRECTION");
TEXT_IO.PUTLINE(I----- ---- -----

loop
POP(S,E);INTEGERINOUT.PIJT(E);TEXTIO.PUT (S I)

POP(S,E);INTEGERINOtJT.PtJT(E);TEXT_IO.PUT("i)
POP1(Sl,El);
if El = "NORTH" then

TEXT-lO.PUT ("SOUTH");TEXTIO.new-line;
elsif El = "EAST "1 then

TEXT_1O.PUT ("IWEST");TEXTIO.newý-line;
els-if El = "SOUTH" then

TEXT_IO.PUT (--NORTH");TEXT-IO~new_line;
elsif El = "WEST " then

TEXTJO0.PUT ("EAST") ;TEXT_IO.newý_line;
end if;
exit when S.LATEST =0;

end loop;

TEXTIO.CLOSE(INF);
end PROJO;

77

-- Title : PROJI.ADA
-- Author : CENGIZ EKIN
-- Date : 20/06/92
-- Revised : 04/10/92
-- Course : THESIS
-- Compiler: MERIDIAN ADA
-- Description:
with TEXT_IO, COMMON, CHANNELS;
use COMMON;
procedure PROJI is

-- communication channels that are used

OutToEarth : CHANNELS.CHANNELREF := CHANNELS.OUTPARAMETERS
(2);
InFromEarth CHANNELS.CHANNELREF := CHANNELS.INPARAMETERS
(2);

B : GRID; GRI GRIDPOINT;
counter, counterl integer := 1;

procedure CALWEIGHT (I,J in INTEGER) is
begin

If I = 10 then
B(I,J).N.WEIGHT := -1;
B(I,J).N.DISTANCE := -1;
B(I÷1,J).CURRENT_COST :=10000;

else
B(I,J).N.WEIGHT :=l+ ABS(B(I,J).CURRENTCOST -

B(I+I,J).CURRENTCOST);
end if;
If J = 10 then

B(I,J).E.WEIGHT := -1;
B(I,J).E.DISTANCE := -1;

B(I,J+l).CURRENT_COST :=10000;
else

B(I,J) .E.WEIGHT := I+ABS(B(I,J) .CURRENT_COST -

B(I,J+l) .CURRENTCOST);
end if;
If I = 1 then

B(I,J).S.WEIGHT := -1;
B(IJ).S.DISTANCE := -1;
B(I-l,J).CURRENTCOST :=10000;

else
B(I,J).S.WEIGHT :=l+ ABS(B(I,J).CURRENTCOST - B(I-

I,J).CURRENTCOST);

78

end if;
If J = 1 then

B(I,J).W.WEIGHT :=-1;
B(I,J).W.DISTANCE := -1;
B(I,J-l) .CURRENTCOST :=10000;

else
B(I,J) .W.WEIGHT :=l+ ABS(B(I,J} .CURRENTCOST - B(I,J-

1) .CURRENTCOST);
end if;

end CAL_WEIGHT;

procedure FINDMIN CI,J :in INTEGER) is
begin

if B(I,,J) .CURRENT._COST > (B(I+1,J) .CURRENT_COST
+abs(B(I,J) .N.WEIGHT} } then

B(I,J) .CURRENT_COST (B(I+l,J) .CURRENT_COST
+abs(B(I,J) .N.WEIGHT));

B(I,J).DIRECTION "NORTH";
end if;
if B(I,J) .CURRENT_COST > (B(I,J-i1) .CT3RRENT_COST

+abs(B(I,J) .E.WEIGHT)) then

B(I,J) .CURRENT_COST :=(B(I,,J+1) .CURRENTCOST

-.abs(B(I,J) .E.WEIGHT));
B(I,J).DIRECTION :="EAST "

end if;
if B(I,J) .CURRENT_COST > (B(I-1,J) .CURRENT_COST

+abs(B(I,J) .S.WEIGHT)) then
B(I,J) .CtTRRENTý_COST :=(B(I-1,J) .CURRENT_COST

+abs(B(I,J) .S.WEIGHT));
B(I,J).DIRECTION :="SOUTH";

end if;
if B(I,J) .CTJRRENTý_COST > (B(I,J-l) .CURRENT_COST

+abs(B(I,J) .W.WEIGHT)) then
B(I,J) .CURRENTCOST (B(I,J-l) .CURRENT_COST

+abs(B(I,J) .W.WEIGHT));
B(I,J).DIRECTION "WEST "

end if;
end FIND_..MIN;

begin
for I in 1. .5 loop

for J in 1 . .10 loop
DATAIO.READ(InFromEarth, GRI);

79

B(I,J) := GRI;
end loop;

end loop;

-- It determines the borders and calculates the weights of the
edges..

for I in 1 .. 5 loop
for J in 1..10 loop

CALWEIGHT(I,J);
end loop;

end loop;

-- It makes the costs max number in order to use them in
comparisons for finding
-- the minimum

for---in 1-.. 5 loop
for J in 1 .. 10 loop

B(I,J).CURRENT_COST := 10000;
B(I,J).OLD_COST B(I,J).CURRENTCOST;

end loop;
end loop;

-- This part sends dim of matrix,no of
proccessors,volta,sourceand goal points.

DATAIO.READ(InFromEarth,GRI);
N:=GRI.CURRENTCOST;P:=GRI.OLD-COST;VOLTA :=GRI.N.WEIGHT;
SX:=GRI.E.WEIGHT;SY:=GRI.S.WEIGHT;GX:=GRI.W.WEIGHT;GY:=GRI.E
.DISTANCE;

-- cost minimization...

B(SX,SY).CURRENT_COST := 0;
while COUNTER > 0 loop

COUNTER := 0;
for I in 1..5 loop
for J in 1..10 loop
if I = 5 then

DATAIO.READ(InFromEarth,GRI);
B(I+I,J) := GRI;

GRI .

80

DATA_IO.WRITECOutToEarth,GRI);
end if;
FINDMIN(IJ);
VOLT :=B(I,J) .OLDCOST -B(I,J) .CURRENTCOST;
if VOLT > VOLTA then

COUNTER :=COUNTER +1;
end if;
B(I,J) .OLDCQOST :=B(IJ) .CURRENTCOST;

end loop;
end loop;
DATAIO.READ(InFromEarth, GRI);
counteri : GRI.CURRENTCOST;
if (counter=O) and (counterl=O) then

GRI.CURRENT_COST :=0;
DATAIO.WRITE(OutToEarth, CR1);

else
COUNTER :=1;
GRI.CURRENTý_COST :=l;
DATAIO.WRITE(OutToEarth, CR1);

end if;
end loop;

-- -- -- -- -- -- --in-- -- --.- -- -- -- --loop-- --

for I in 1 ..5 loop

CR1 : B(I,J);
DATAIO.WRITE(OutToEarth,GRI);
end loop;

end loop;
end PROJl;

81

File: makefile
"make help" to print option list

Complete development cycle:
make family -- makes Ada family and library

directories
make -- compiles, links, configures source
make run -- run bootable code

MODE = s
PROC =8
OPTS =/$(MODE) /t$(PROC)

*make the executable code
,11a.±n.btl: mainh.c$(PROC)$(MODE) projlh.c$(PROC)$(MODE)
main.pgm,

@ echo EXPECT 1 WARNING ...
iconf /s main.pgm
@ f:\util\bell

inainh.c$(PROC)$(MODE): projO.o projOh.t$(PROC)$(MODE)
merger.t$(PROC)$(MODE) mainh.t$(PROC)$(MODE)

ilink /f main.lnk

projO.o: common.ada projO.ada
ada invoke projO.inv,yes

proj~h.t$(PROC!)$(MODE): projOh2.tax projOh.occ
occam $(OPTS) projOh.occ

proj Th2.tax: proj 0h2.occ
occam /ta /x projOh2.occ

merger.t$ (PROC)$(MODE): merger.occ
occam $(OPTS) merger.occ

rnainh.t$(PROC)$(MODE): mainh.occ
occam $(OPTS) mainh.occ

projlh.c$(PROC)$(MODE): projl.o projlh.t$(PROC)$(MODE)
ilink projlh.t$(PROC)$(MODE) projl.o adarts8.lib

hostio.lib occam8s.lib

82

projl.o: common.ada projl.ada
ada invoke projl.inv,yes

projlh.t$(PROC)$(MODE): projlh2.tax projlh.occ
occam $(OPTS) projlh.occ

projlh2.tax: projlh2.occ
occam /ta /x projlh2.occ

#

misc.
#

help:
@ echo Make arguments:
@ echo make - make from top level down
@ echo make -n [opt] - display but don't execute

commands
@ echo make *.o - make Ada object
@ echo make help - display this list
@ echo make clean - delete all files except source
@ echo make run - run bootable program
@ echo make check - check transputer topology
@ echo make family - make Ada family and library

directories

clean:
del *.M?
del *.tax
del *.o
del *.dsc
del *.btl
del testlib\adalib.*
rd testlib
del testfam\adafam.*
rd testfam

run:
iserver /sb main.btl

check:
check /r

family:
ada invoke family.inv,yes

83

-- File: main.pgm
#INCLUDE "hostio. inco
#INCLUDE thlinkaddr. inco
PROTOCOL PASS IS INT;[5]BYTE

#USE "mainh.c8s"
#UJSE 'tprojlh.c8s"

CHAN OF PASS Mars2Earth, Earth2Mars:
CHAN OF SP FrornFiler, ToFiler:

PLACED PAR

PROCESSOR 0 T8

PLACE FrornFiler AT link0.in:
PLACE ToFiler AT link0.out:
PLACE Mars2Earth AT link2..in:
PLACE Earth2Mars AT link2.out:

(1325000] INT wsl:
main.harness (FromnFiler, ToFiler, Mars2Earth, Earth2Mars,

ws 1)

PROCESSOR 1 T8

PLACE Earth2Mars AT linkO.jn:

PLACE Mars2Earth AT linkO.out:

[1280000) INT ws2:

projl .harness (Mars2Earth, Earth2Mars, ws2)

84

-- File main.lnk
-- Purpose: File list for ilink

mainh.t8s
merger t8s
hostio.lib
occam8s. lib
projOh.t8s projO.o adarts8.lib hostio.lib occam8s.lib

-- File: faxnily.inv
family.new testjfam, overwrite=yes
lib(family=test-fan) .new testjlib,overwrite=yes

-- File: projO.inv
default.compile library=test_lib
compile common.ada
compile projO.ada
default .bind library=test_lib, level=bind,warning~no
bind proiO,object="projO'.o"l,entry~point="projO.programIn

-- File: projl.inv
default compile library=testjlib
compile projl.ada
default .bind library=test-lib, level=bind,warning=no
bind projl,object="proj~l.o",entry~point="projl.programIn

85

-- File: inainh.occ
#OPTION "AGNVW"
#INCLUDE "hostio.inc"
PROTOCOL PASS IS INT;[51BYTE
PROC main.harness (CHAN OF SP FromFiler, ToFiler,

CHAN OF PASS Mars2Earth, Earth2Mars,
[]INT FreeMemory)

#USE "hostio.lib"

#USE "projOh.t8s"

#USE "'merger.t8s"

[l]CI{AN OF ANY Debug:
[2]CHAN OF SP FromAda, ToAda:
CH-AN OF BOOL StopDebug, StopMultiplexor:
SEQ

PAR

__ A multiplexor to combine the debug and normal c- -it
so.multiplexor (FromFiler, ToFiler, FromAda, ToAaa,

StopMultiplexor)

-- A debug channel merger.
debug.merger (ToAda[O], FromAda[O], Debug, StopDebug)

-- A process to invoke the sieve program.
ws IS FreeMemory:
SEQ
projO.harness (FromAda~l], ToAdafli, Debug[O],

Mars2Earth, Earth2Mars, ws)
StopDebug ! FALSE
StopMultiplexor !FALSE

so.exit (FromFiler, ToFiler, sps.success)

86

-- File: merger.occ

#OPTION "AGNVW"
#INCLUDE "hostio.inc"

PROC debug.merger (CHAN OF SP FromFiler, ToFiler,
[]CHAN OF ANY Debug,

CHAN OF BOOL Stop)

#USE "hostio.lib"

-- A debug channel merger and blocker.

VAL max.debug IS 20:
VAL number.of.debug IS SIZE Debug:

INT line.index:
[256]BYTE line.buffer:

BYTE value, r:
BOOL running, reset, s:
[max.debug]BOOL mask:

VAL BYTE line.feed IS 10 (BYTE):
SEQ

SEQ i = 0 FOR number.of.debug
mask[i] := TRUE

running := TRUE
reset := FALSE
line.index := 0
WHILE running

PRI ALT
ALT i = 0 FOR number.of.debug

mask(i] & Debug[i] ? value
SEQ

IF
value = line.feed

SEQ
-- Send the complete line.

so.puts (FromFiler, ToFiler, spid.stdout,
[line.buffer FROM 0 FOR line.index], r)

line.index := 0
mask [i] := FALSE
reset := TRUE

TRUE

87

SEQ
__ Add character to line.
line.buffer[line.index] := value
line.index := line.index + 1

reset & SKIP
SEQ

reset FALSE
SEQ i = 0 FOR number.of.debug

mask(i] := TRUE
Stop ? s

running FALSE

88

-- File: projOh.occ

#OPTION "AGNVt4"
#INCLUDE "host io.ic
PROTOCOL PASS IS INT;(5]BYTE
PROC projO.harness (CHAN OF SP FromAda, ToAda,

CHAN OF ANY Debug,
CHAN OF PASS Mars2Earth, Earth2Mars,
HJINT FreeMemory)

#IMPORT "proj 0h2.tax"

11 INT dummy. ws:
wsl IS FreeMeinory:
[3]INT in.program:
[3]INT out.program:
SEQ

__ Set up vector of pointers to channels.
in.program[O] : MOSTNEO INT -- not used
LOAD.INPUT.CHANNEL (in.programfll], ToAda)
LOAD.INPUT.CHANNEL (in.program[21, Mars2Earth)
LOAD.OUTPUT.CHANNEL (out .programt 0], Debug)
LOAD .OTJTPUT.CHANNEL (out .progranl 11, FromAda)
LOAD.OUTPUT.CHANNEL (out .program[21, Earth2Mars)

-- Invoke the Ada program.
-- Assumes the entry point name has been changed to

"proj 0 .program".
proj0.program (wsl, in.program, out.program, dumnmy.ws)

-- File: PROJOh2.occ
#OPTION "AEV"
PROC proj0.program ((lINT wsl, in, out, ws2)

[l000]INT d:
SEQ

SKIP

89

--File: projlh.occ

#OPTION 'AGNVW"
#INCLUDE "host jo.incl,
PROTOCOL PASS IS INT;[5]BYTE

PROC projl.harness (CHAN OF PASS Mars2Earth, Earth2Mars,
[lINT FreeMemory)

#IMPORT "proj 1h2 .tax"

[1]INT dummxy.ws:
wsl IS FreeMemory:
[3IIINT in.prograrn:
[3IINT out .program:
SEQ

__ Set up vector of pointers to channels.
in.prograrn[O) MOSTNEG INT -- not used
in.prograxn~h] :=MOSTNEG INT -- standard i/o not used
LOAD. INPUT.CHANNEL (in.program[2], Earth2Mars)
out.program[0] MOSTNEG INT -- standard i/o not used
out.program(h11: MOSTNEG INT -- standard i/o not used
LOAD.OUTPUT.CI{ANNEL (out .program[2], Mars2Earth)

-- Invoke the Ada program.
-- Assumes the entry point name has been changed to

"proji .program".
proji .program (wsl, in.prograzn, out .program, durnmy.ws)

-- File: projlh2.occ

#OPTION "AEV"

PROC projl.program (HIINT wsl, in, out, ws2)
[lOOQOOIINT d:
SEQ

SKIP

90

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS 2
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

Professor Amr Zaky 1
Code CS/Za
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

Professor Mantak Shing
Code CS/Sh
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

Professor Robert McGhee
Code CS/Mz

L Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

Professor Shridhar Shukla
Code EC/Sh
Department of Electrical & Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5100

91

Professor Anthony Healey 1

Code ME/Hy
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5100

Professor Sehung Kwak I
Code CS/Kw
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

Deniz Kuvvetleri Komutanligi 1
Personel Daire Baskanligi
Bakanliklar, Ankara / TURKEY

Golcuk Tersanesi Komutanligi 2
41650 Golcuk, Kocaeli / TURKEY

Deniz Harp Okulu Komutanligi 2
81704 Tuzla, Istanbul / TURKEY

Taskizak Tersanesi Komutanligi 2
Kasimpasa, Istanbul / TURKEY

Cengiz EKIN 2
Gulistan Sok. No:13-6
Abidinpasa Ankara / TURKEY

92

